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Abstract—Continued advances in mobile networks and positioning technologies have created a strong market push for location-based

applications. Examples include location-aware emergency response, location-based advertisement, and location-based

entertainment. An important challenge in the wide deployment of location-based services (LBSs) is the privacy-aware management of

location information, providing safeguards for location privacy of mobile clients against vulnerabilities for abuse. This paper describes a

scalable architecture for protecting the location privacy from various privacy threats resulting from uncontrolled usage of LBSs. This

architecture includes the development of a personalized location anonymization model and a suite of location perturbation algorithms.

A unique characteristic of our location privacy architecture is the use of a flexible privacy personalization framework to support location

k-anonymity for a wide range of mobile clients with context-sensitive privacy requirements. This framework enables each mobile client

to specify the minimum level of anonymity that it desires and the maximum temporal and spatial tolerances that it is willing to accept

when requesting k-anonymity-preserving LBSs. We devise an efficient message perturbation engine to implement the proposed

location privacy framework. The prototype that we develop is designed to be run by the anonymity server on a trusted platform and

performs location anonymization on LBS request messages of mobile clients such as identity removal and spatio-temporal cloaking of

the location information. We study the effectiveness of our location cloaking algorithms under various conditions by using realistic

location data that is synthetically generated from real road maps and traffic volume data. Our experiments show that the personalized

location k-anonymity model, together with our location perturbation engine, can achieve high resilience to location privacy threats

without introducing any significant performance penalty.

Index Terms—k-anonymity, location privacy, location-based applications, mobile computing systems.
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1 INTRODUCTION

IN his famous novel 1984 [1], George Orwell envisioned a
world in which everyone is being watched, practically at

all times and places. Although, as of now, the state of affairs
has not come to such totalitarian control, projects like
DARPA’s recently dropped LifeLog [2], which has stimu-
lated serious privacy concerns, attest that continuously
tracking where individuals go and what they do is not only
in the range of today’s technological advances but also
raises major personal privacy issues, regardless of the many
beneficial applications that it can provide.

According to the report by the Computer Science and
Telecommunications Board in IT Roadmap to a Geospatial
Future [3], location-based services (LBSs) are expected to
form an important part of the future computing environ-
ments that will be seamlessly and ubiquitously integrated
into our lives. Such services are already being developed
and deployed in the commercial and research worlds. For
instance, the NextBus [4] service provides location-based
transportation data, the CyberGuide [5] project investigates
context-aware location-based electronic guide assistants,
and the Federal Communications Commission (FCC)’s
Phase II E911 requires wireless carriers to provide precise

location information within 125 m in most cases for
emergency purposes [6].

1.1 Location Privacy Risks

Advances in global positioning and wireless communica-
tion technologies create new opportunities for location-
based mobile applications, but they also create significant
privacy risks. Although, with LBSs, mobile clients can
obtain a wide variety of location-based information ser-
vices, and businesses can extend their competitive edges in
mobile commerce and ubiquitous service provisions, the
extensive deployment of LBSs can open doors for adver-
saries to endanger the location privacy of mobile clients and
to expose LBSs to significant vulnerabilities for abuse [7].

A major privacy threat specific to LBS usage is the
location privacy breaches represented by space or time-
correlated inference attacks. Such breaches take place when
a party that is not trusted gets access to information that
reveals the locations visited by the individual, as well as the
times during which these visits took place. An adversary
can utilize such location information to infer details about
the private life of an individual such as their political
affiliations, alternative lifestyles, or medical problems [8] or
the private businesses of an organization such as new
business initiatives and partnerships.

Consider a mobile client which receives a real-time traffic
and roadside information service from an LBS provider. If a
user submits her service request messages with raw
position information, the privacy of the user can be
compromised in several ways, assuming that the LBS
providers are not trusted but semihonest. For instance, if
the LBS provider has access to information that associates
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location with identity, such as person A lives in location L,
and if it observes that all request messages within location L
are from a single user, then it can infer that the identity of
the user requesting the roadside information service is A.
Once the identity of the user is revealed, further tracking of
future positions can be performed by using a simple
connect-the-dots approach. In the literature, this type of
attack is called Restricted Space Identification [8]. Another
possible attack is to reveal the user’s identity by relating
some external observation on location-identity binding to a
message. For instance, if person A was reported to visit
location L during time interval � , and if the LBS provider
observed that all request messages during time interval �
came from a single user within location L, then it can infer
that the identity of the user in question is A. The second
type of attack is called Observation Identification [8] in the
literature.

In order to protect the location information from third
parties that are semihonest but not completely trusted, we
define a security perimeter around the mobile client. In this
paper, the security perimeter includes the mobile client of
the user, the trusted anonymity server, and a secure channel
where the communication between the two is secured
through encryption (see Fig. 1). By semihonest we mean that
the third-party LBS providers are honest and can correctly
process and respond to messages, but are curious in that
they may attempt to determine the identity of a user based
on what they “see,” which includes information in the
physical world that can lead to location-identity binding or
association. We do not consider cases where LBS providers
are malicious. Thus, we do not consider the attack scenarios
in which the LBSs can inject a large number of colluding
dummy users into the system.

1.2 Architecture Overview

We show the system architecture in Fig. 1. Mobile clients
communicate with third-party LBS providers through the
anonymity server. The anonymity server is a secure
gateway to the semihonest LBS providers for the mobile
clients. It runs a message perturbation engine, which performs
location perturbation on the messages received from the

mobile clients before forwarding them to the LBS provider.
Each message sent to an LBS provider contains the location
information of the mobile client and a time stamp, in
addition to service-specific information. Upon receiving a
message from a mobile client, the anonymity server
removes any identifiers such as Internet Protocol (IP)
addresses, perturbs the location information through
spatio-temporal cloaking, and then forwards the anon-
ymized message to the LBS provider. Spatial cloaking refers
to replacing a 2D point location by a spatial range, where
the original point location lies anywhere within the range.
Temporal cloaking refers to replacing a time point
associated with the location point with a time interval that
includes the original time point. These terms were
introduced by Gruteser and Grunwald [8]. In our work,
the term location perturbation refers to the combination of
spatial cloaking and temporal cloaking.

1.3 k-Anonymity and Location k-Anonymity

There are two popular approaches to protect location
privacy in the context of LBS usage: policy-based [9] and
anonymity-based approaches [8]. In policy-based ap-
proaches, mobile clients specify their location privacy
preferences as policies and completely trust that the third-
party LBS providers adhere to these policies. In the
anonymity-based approaches, the LBS providers are
assumed to be semihonest instead of completely trusted.
We advocate k-anonymity preserving management of
location information by developing efficient and scalable
system-level facilities for protecting the location privacy
through ensuring location k-anonymity. We assume that
anonymous location-based applications do not require user
identities for providing service. A discussion on pseudon-
ymous and nonanonymous LBSs is provided in Section 7.

The concept of k-anonymity was originally introduced in
the context of relational data privacy [10], [11]. It addresses
the question of “how a data holder can release its private
data with guarantees that the individual subjects of the data
cannot be identified whereas the data remain practically
useful” [12]. For instance, a medical institution may want to
release a table of medical records with the names of the
individuals replaced with dummy identifiers. However,
some set of attributes can still lead to identity breaches.
These attributes are referred to as the quasi-identifier. For
instance, the combination of birth date, zip code, and
gender attributes in the disclosed table can uniquely
determine an individual. By joining such a medical record
table with some publicly available information source like a
voters list table, the medical information can be easily
linked to individuals. k-anonymity prevents such a privacy
breach by ensuring that each individual record can only be
released if there are at least k� 1 distinct individuals whose
associated records are indistinguishable from the former in
terms of their quasi-identifier values.

In the context of LBSs and mobile clients, location
k-anonymity refers to the k-anonymity usage of location
information. A subject is considered location k-anonymous if
and only if the location information sent from a mobile
client to an LBS is indistinguishable from the location
information of at least k� 1 other mobile clients [8]. This
paper argues that location perturbation is an effective
technique for supporting location k-anonymity and dealing
with location privacy breaches exemplified by the location
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inference attack scenarios discussed in Section 1.1. If the
location information sent by each mobile client is perturbed
by replacing the position of the mobile client with a coarser
grained spatial range such that there are k� 1 other mobile
clients within that range ðk > 1Þ, then the adversary will
have uncertainty in matching the mobile client to a known
location-identity association or an external observation of
the location-identity binding. This uncertainty increases
with the increasing value of k, providing a higher degree of
privacy for mobile clients. Referring back to the roadside
information service example of Section 1.1, now, even
though the LBS provider knows that person A was reported
to visit location L, it cannot match a message to this user
with certainty. This is because there are at least k different
mobile clients within the same location L. As a result, it
cannot perform further tracking without ambiguity.

1.4 Contributions and Scope of the Paper

This paper describes a personalized k-anonymity model for
protecting location privacy. Our design and development
are motivated by an important observation: location privacy
demands personalization. In other words, location privacy is
a personalized requirement and is context sensitive. An
individual may have different privacy requirements in
different contexts, and different individuals may require
different levels of privacy in the same context. Unfortu-
nately, existing anonymization solutions to location priv-
acy threats in accessing LBSs, such as the earlier work on
location k-anonymity [8], are essentially “one size fits all”:
users do not have the ability to tailor the personalization
capability to meet their individual privacy preferences.
Most of the LBSs today promise ubiquitous access in an
increasingly connected world. However, they do not take
into account the possibility that a user’s willingness to
share location data may depend on a range of factors such
as various contextual information about the user, for
example, environmental context, task context, social con-
text, and so forth. One way to support personalized
location k-anonymity is to allow users to specify different
ks at different times.

There is a close synergy between location privacy and
location k-anonymity. A larger k in location anonymity
implies higher guarantees for location privacy. However,
larger k values make it necessary to perform additional
spatial and temporal cloaking for successful message
anonymization, resulting in low spatial and temporal
resolution for the anonymized messages. This, in turn, may
lead to degradation in the quality of service (QoS) of LBS
applications, such as taking a longer time to serve the user’s
request or sending more than the required information back
to the mobile client as a result of the inaccuracy associated
with the user’s location after applying location cloaking.

These observations illustrate that there is a trade-off
between the desired level of location privacy and the
resulting loss of QoS from LBSs. The “one-size-fits-all”
approach to location privacy negatively impacts the QoS
for mobile clients with lower privacy requirements. This
calls for a framework that can handle users with different
location privacy requirements and allows users to specify
their preferred balance between the degree of privacy
and the QoS.

Our location privacy model exhibits two distinct fea-
tures. The first characteristic of our model is its ability to

enable each mobile client to specify the minimum level of
anonymity that it desires and the maximum temporal and
spatial tolerances that it is willing to accept when requesting
k-anonymity preserving LBSs. Concretely, instead of impos-
ing a uniform k for all mobile clients, we provide efficient
algorithms and system-level facilities to support a person-
alized k at a per-user level. Each user can specify a different
k-anonymity level based on her specific privacy requirement
and can change this specification at a per-message
granularity. Furthermore, each user can specify her pre-
ferred spatial and temporal tolerances that should be
respected by the location perturbation engine while main-
taining the desired level of location k-anonymity. We call
such tolerance specification and preference of the k value
the anonymization constraint of the message. The preference
of the k value defines the desired level of privacy protection
that a mobile client wishes to have, whereas the temporal
and spatial tolerance specifications define the acceptable
level of loss in QoS from the LBS applications.

The second distinctive characteristic of our location
privacy model is the development of an efficient message
perturbation engine, which is run by the trusted anonymiza-
tion server, and performs location anonymization on
mobile clients’ LBS request messages such as identity
removal and spatio-temporal cloaking of location informa-
tion. We develop a suite of scalable and efficient spatio-
temporal location cloaking algorithms, taking into account
the trade-off between location privacy and QoS. Our
location perturbation engine can continuously process a
stream of messages for location k-anonymity and can work
with different cloaking algorithms to perturb the location
information contained in the messages sent from mobile
clients before forwarding any request messages to the LBS
provider(s).

We conduct a series of experimental evaluations. Our
results show that the proposed personalized location
k-anonymity model, together with our message perturba-
tion engine and location cloaking algorithms, can achieve
high guarantees of k-anonymity and high resilience to
location privacy threats without introducing significant
performance penalties. To the best of our knowledge, the
previous work on location privacy has not addressed these
issues. An earlier version of this paper appeared in a
conference [13], which focuses on the basic concept of
personalized location k-anonymity and the design ideas of
our base algorithm for performing personalized location
cloaking. In contrast, this paper presents the complete
framework for supporting personalized location privacy,
which includes the formal definition of personalized
location k-anonymity, the theoretical framework for the
proposed base algorithm with respect to its compliance
with personalized location k-anonymity, the optimized
algorithms that enhance the base algorithm, and an
extensive experimental study illustrating the effectiveness
of the newly proposed algorithms.

2 PERSONALIZED LOCATION K-ANONYMITY:
TERMINOLOGY AND DEFINITIONS

2.1 Message Anonymization Basics

In order to capture varying location privacy requirements
and ensure different levels of service quality, each mobile
client specifies its anonymity level (k value), spatial tolerance,
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and temporal tolerance. The main task of a location
anonymity server is to transform each message received
from mobile clients into a new message that can be safely
(k-anonymity) forwarded to the LBS provider. The key idea
that underlies the location k-anonymity model is twofold.
First, a given degree of location anonymity can be
maintained, regardless of population density, by decreasing
the location accuracy through enlarging the exposed spatial
area such that there are other k� 1 mobile clients present in
the same spatial area. This approach is called spatial
cloaking. Second, one can achieve location anonymity by
delaying the message until k mobile clients have visited the
same area located by the message sender. This approach is
called temporal cloaking. For reference convenience, we
provide Table 1 to summarize the important notations used
in this section and throughout the rest of the paper. The last
three notations will be introduced in Section 3.

We denote the set of messages received from the mobile
clients as S. We formally define the messages in the set S as
follows:

ms 2 S : huid; rno|fflfflffl{zfflfflffl}
sender id

message no

; ft; x; yg|fflfflfflffl{zfflfflfflffl}
spatio�temporal

point

; k|{z}
anonymity

level

; fdt; dx; dyg|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
temporal and spatial

tolerances

; Ci:

Messages are uniquely identifiable by the sender’s
identifier, message reference number pairs ðuid; rnoÞ, with-
in the set S. Messages from the same mobile client have
the same sender identifiers but different reference num-
bers. In a received message, x, y, and t together form the
3D spatio-temporal location point of the message, denoted as
LðmsÞ. The coordinate ðx; yÞ refers to the spatial position
of the mobile client in the 2D space (x-axis and y-axis), and
the time stamp t refers to the time point at which the
mobile client was present at that position (temporal
dimension: t-axis).

The k value of the message specifies the desired
minimum anonymity level. A value of k ¼ 1 means that
anonymity is not required for the message. A value of k > 1
means that the perturbed message will be assigned a spatio-
temporal cloaking box that is indistinguishable from at least
k� 1 other perturbed messages, each from a different
mobile client. Thus, larger k values imply higher degrees of
privacy. One way to determine the appropriate k value is to

assess the certainty with which an adversary can link the
message with a location/identity association or binding.
This certainty is given by 1=k.

The dt value of the message represents the temporal
tolerance specified by the user. It means that the perturbed
message should have a spatio-temporal cloaking box whose
projection on the temporal dimension does not contain any
point more than dt distance away from t. Similarly, dx
and dy specify the tolerances with respect to the spatial
dimensions. The values of these three parameters are
dependent on the requirements of the external LBS and
users’ preferences with regard to QoS. For instance, larger
spatial tolerances may result in less accurate results to
location-dependent service requests, and larger temporal
tolerances may result in higher latencies of the messages.
The dt value also defines a deadline for the message such that
a message should be anonymized until time ms:tþms:dt. If
not, then the message cannot be anonymized according to
its constraints, and it is dropped. Let �ðv; dÞ ¼ ½v� d; vþ d�
be a function that extends a numerical value v to a range
by amount d. Then, we denote the spatio-temporal constraint
box of a message ms as BcnðmsÞ and define it as
ð�ðms:x;ms:dxÞ;�ðms:y;ms:dyÞ;�ðms:t;ms:dtÞÞ. The field C
in ms denotes the message content.

We denote the set of perturbed (anonymized) messages as
T . The messages in T are defined as follows:

mt 2 T : huid; rno; fX : ½xs; xe�; Y : ½ys; ye�; I : ½ts; te�g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BclðmtÞ; spatio�temporal cloaking box

; Ci:

For each message ms in S, there exists at most one
corresponding message mt in T . We call the message mt

the perturbed format of message ms, denoted as mt ¼ RðmsÞ.
The functionR defines a surjection (onto mapping) from S to
T [ fnullg. Concretely, if RðmsÞ ¼ mt, then mt:uid ¼ ms:uid
and mt:rno ¼ ms:rno. If RðmsÞ ¼ null, then the message ms is
not anonymized. The ðuid; rnoÞ fields of a message in T are
replaced with a randomly generated identifier before the
message can be safely forwarded to the LBS provider.

In a perturbed message, X : ½xs; xe� denotes the extent
of the spatio-temporal cloaking box of the message on the
x-axis, with xs and xe denoting the two end points of the
interval. The definitions of Y : ½ys; ye� and I : ½ts; te� are
similar, with the y-axis and t-axis replacing the x-axis,
respectively. We denote the spatio-temporal cloaking box
of a perturbed message as BclðmtÞ and define it as
ðmt:X : ½xs; xe�;mt:Y : ½ys; ye�;mt:I : ½ts; te�Þ. The field C in
mt denotes the message content.

2.1.1 Basic Service Requirements

The following basic properties must hold between a raw
message ms in S and its perturbed format mt in T , where
the A u B notation is used in the rest of the paper to express
that the n-dimensional rectangular region A is contained in
the n-dimensional rectangular region B:

1. Spatial containment: ms:x 2 mt:X, ms:y 2 mt:Y .
2. Spatial resolution: mt:X u �ðms:x;ms:dxÞ,

mt:Y u �ðms:y;ms:dyÞ.
3. Temporal containment: ms:t 2 mt:I.
4. Temporal resolution: mt:I u �ðms:t;ms:dtÞ.
5. Content preservation: ms:C ¼ mt:C.
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Spatial containment and temporal containment require-
ments state that the cloaking box of the perturbed
message BclðmtÞ should contain the spatio-temporal point
LðmsÞ of the original message ms. Spatial resolution and
temporal resolution requirements amount to saying that,
for each of the three dimensions, the extent of the spatio-
temporal cloaking box of the perturbed message on that
dimension should be contained within the interval
defined by the desired maximum tolerance value specified
in the original message. This is equivalent to stating that
the cloaking box of the perturbed message should be
contained within the constraint box of the original
message, i.e., BclðmtÞ u BcnðmsÞ. The content preservation
property ensures that the message content remains as it is.

2.1.2 Anonymity Requirement

We formally capture the essence of location k-anonymity by
the following requirement, which states that, for a message
ms in S and its perturbed format mt in T , the following
condition must hold:

. Location k-anonymity: 9T 0 � T , such that mt 2 T 0,
jT 0j � ms:k,

8fmti
;mtj
g�T 0 ; mti :uid 6¼ mtj :uid

and 8mti
2T 0 ; BclðmtiÞ ¼ BclðmtÞ:

The k-anonymity requirement demands that, for each
perturbed message mt ¼ RðmsÞ, there exist at least ms:k� 1
other perturbed messages with the same spatio-temporal
cloaking box, each from a different mobile client. A key
challenge for the cloaking algorithms employed by the
message perturbation engine is to find a set of messages
within a minimal spatio-temporal cloaking box that satisfies
the above conditions.

The following formal definition summarizes the person-
alized location k-anonymity.

Definition 2.1 (Personalized location k-anonymity). The
set T of anonymized messages respect the personalized location
k-anonymity if and only if the following conditions are met
for each message mt in T and its corresponding message ms in
S, where mt ¼ RðmsÞ:

1. spatial containment,
2. spatial resolution,
3. temporal containment,
4. temporal resolution,
5. content preservation, and
6. location k-anonymity.

2.2 Location k-Anonymity: Privacy Value and
Performance Implications

The personalized location k-anonymity model presented in
this paper strives to strike a balance between providing an
effective location privacy and maintaining the desired QoS
and performance characteristics. In the rest of this section,
we first describe the privacy value of our approach and
then discuss the impact of location perturbation on the
performance and QoS of the location-based applications.

2.2.1 Privacy Value of Location k-Anonymity

We illustrate the privacy value of our location k-anonymity
model by comparing it with the strategy that only masks the

sources of the LBS requests. Assuming that the sources of
the service request messages of mobile clients can be
masked from the LBS servers through the use of a trusted
anonymization server as a mix [14], [15], we want to show
that the location information retained in these messages can
still create a threat against location privacy, especially when
combined with information obtained from external obser-
vation or knowledge.

As an example, consider the scenario in Fig. 2 where
three mobile clients, labeled A, B, and C, and their
trajectories (routes), denoted as Ra, Rb, and Rc, are depicted.
If no location k-anonymization is performed at the anonym-
ity server, then the following linking attack can be
performed by an adversary. First, the adversary can
construct an approximation of the trajectories of the mobile
clients by using the location information exposed in the
service request messages of the mobile clients. Second, it
can obtain a location/identity binding through external
observation [8] such as A has been spotted at position x at
time t. Finally, the adversary can link this binding with the
trajectories that it has at hand, finding the correct trajectory
of node A. In Fig. 2, if node A has been spotted at the
position marked x, then the trajectory Ra can be associated
with A since no other trajectories cross the point x.
However, such a linking attack is not effective if proper
location perturbation is performed by the trusted anonym-
ity server. For instance, assume that the location informa-
tion in the service request messages of nodes A, B, and C
are perturbed according to location k-anonymity with k ¼ 3.
The location k-anonymization replaces the point position
information x included in the request messages by a
location cloaking box, as shown in Fig. 2. Now, even if
the adversary can infer approximate trajectories, it cannot
link the location/identity binding with one of the trajec-
tories with certainty because the point x now links with
three different request messages, each with probability
k�1 ¼ 1=3. In summary, the higher the k value, the better the
protection that one can achieve against linking attacks.

2.2.2 QoS and Performance Implications of Location

k-Anonymity

Achieving location k-anonymity with higher k, thus with
higher location privacy, typically requires assigning larger
cloaking boxes to perturbed messages. However, arbitrarily
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large cloaking boxes can potentially result in a decreased
level of QoS or performance with respect to the target
location-based application. Here, we give an example
scenario to illustrate the negative impacts of using large
cloaking boxes.

Assume that our LBS application provides a resource
location service such as providing answers to continuous
queries asking for the nearest resources with certain types
and properties during a specified time interval; for
example, the nearest gas station offering gas under 2=gal
during the next half-hour. Fig. 3 shows four objects o1, o2,
o3, and o4 that are valid gas stations for the result of such a
query posed by a mobile client A, where the aim of the LBS
is to provide A with the nearest gas station, that is, o1. The
figure also shows a sample cloaking box assigned to one of
the service request messages of node A by the anonymity
server. Since the LBS is unable to tell the exact location of
node A within the cloaking box, and since the cloaking box
covers all of the four objects, the LBS will be unable to
determine the exact result; that is, it cannot decide which of
the four objects is the closest one. There are different
possible ways of handling this problem, each with a
different shortcoming. First, the server may choose to
report only one result by making a random decision. In this
case, the QoS of the application, as perceived by the user,
will degrade. The larger the cloaking box is, the higher the
expected distance between the actual result and the
reported result will be. Second, the server may choose to
report all valid resources within the cloaking box. In this
case, several side effects arise. For instance, one side effect
is that, the larger the cloaking box is, the larger the size of
the result set will be and, thus, the higher the communica-
tion and processing costs are, which degrades the perfor-
mance. Moreover, the result set requires further filter
processing at the mobile client side to satisfy the application
semantics. This means that each LBS may need to ship
some amount of postprocessing to the mobile client side in
order to complete query processing, and this results in
running untrusted code at the mobile client side. On the
other hand, the LBS may choose to skip the postprocessing
step, which leaves the filtering to the user of the system and
thus decreases the QoS. An alternative for the LBS is to use
probabilistic query processing techniques [16] to rank the
results and provide hints to the filtering process to alleviate
the degradation in QoS.

In summary, we argue that there is a need for adjusting
the balance between the level of protection provided by
location k-anonymity and the level of performance degrada-
tion in terms of the QoS of LBSs due to location cloaking.
Such a balance should be application driven. Our person-
alized location-anonymity model makes it possible to adjust
this balance at a per-user level, with the granularity of
individual messages.

3 MESSAGE PERTURBATION: DESIGN AND

ALGORITHMS

In this section, we first give an overview of the message
perturbation engine. Then, we establish a theoretical basis
for performing spatio-temporal cloaking. This is followed
by an in-depth description of the perturbation engine and
the algorithms involved.

3.1 Engine Overview

The message perturbation engine processes each incoming
message ms from mobile clients in four steps. The first step,
called zoom in, involves locating a subset of all messages
currently pending in the engine. This subset contains
messages that are potentially useful for anonymizing the
newly received message ms. The second step, called
detection, is responsible for finding the particular group of
messages within the set of messages located in the zoom-in
step such that this group of messages can be anonymized
together with the newly received message ms. If such a
group of messages is found, then the perturbation is
performed over these messages in the third step, called
perturbation, and the perturbed messages are forwarded to
the LBS provider. The last step, called expiration, checks for
pending messages whose deadlines have passed and thus
should be dropped. The deadline of a message is the high
point along the temporal dimension of its spatio-temporal
constraint box, and it is bounded by the user-specified
temporal tolerance level.

In order to guide the process of finding the particular set
of messages that should be anonymized as a group, we
develop the CliqueCloak theorem (see Section 3.2). We refer
to the cloaking algorithms that make their decisions based
on this theorem as the CliqueCloak algorithms. The
perturbation engine, which is driven by the local-k search
as the main component of the detection step, is our base
CliqueCloak algorithm. Other CliqueCloak algorithms are
discussed in Section 4.

3.2 Grouping Messages for Anonymization

A key objective for location anonymization is to develop
efficient location cloaking algorithms for providing person-
alized privacy protection while maintaining the desired
QoS. A main technical challenge for developing an efficient
cloaking algorithm is to find the smallest spatio-temporal
cloaking box for each message ms 2 S within its specified
spatial and temporal tolerances such that there exist at least
ms:k� 1 other messages, each from a different mobile
client, with the same minimal cloaking box. Let us consider
this problem in two steps in reverse order: 1) given a set M
of messages that can be anonymized together, how can the
minimal cloaking box in which all messages in M reside be
found, and 2) for a message ms 2 S, how can the set M
containing ms and the group of messages that can be
anonymized together with ms be found? A set M � S of
messages are said to be anonymized together if they are
assigned the same cloaking box and all the requirements
defined in Section 2.1 are satisfied for all messages in M.

Consider a set M � S of messages that can be anony-
mized together. The best strategy to find a minimal cloaking
box for all messages in M is to use the minimum bounding
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rectangle (MBR1) of the spatio-temporal points of the
messages in M as the minimal cloaking box. This definition
of minimal cloaking box also ensures that the cloaking box
is contained in the constraint boxes of all other messages in
M. We denote the minimum spatio-temporal cloaking box of a
set M � S of messages that can be anonymized together as
BmðMÞ, and we define it to be equal to the MBR of the
points in the set fLðmsÞjms 2Mg, where LðmsÞ denotes the
spatio-temporal location point of the message ms.

Now, let us consider the second step: Given a message
ms 2 S, how can the set M containing ms and the group of
messages that can be anonymized together with ms be
found? Based on the above analysis and observations, one
way to tackle this problem is to model the anonymization
constraints of all messages in S as a constraint graph
defined below and translate the problem into the problem
of finding cliques that satisfy certain conditions in the
constraint graph.

Definition 3.1 (Constraint graph). Let GðS;EÞ be an
undirected graph where S is the set of vertices, each representing
a message received at the trusted location perturbation engine,
and E is the set of edges. There exists an edge e ¼ ðmsi ;msjÞ 2
E between two vertices msi and msj if and only if the following
conditions hold: 1) LðmsiÞ 2 BcnðmsjÞ, 2) LðmsjÞ 2 BcnðmsiÞ,
and 3) msi :uid 6¼ msj :uid. We call this graph the constraint
graph.

Conditions 1, 2, and 3 together state that two messages
are connected in the constraint graph if and only if they
originate from different mobile clients and their spatio-
temporal points are contained in each other’s constraint
boxes defined by their tolerance values.

Theorem 3.1 (CliqueCloak theorem). Let GðS;EÞ be a
constraint graph M ¼ fms1

;ms2
; . . . ;mslg � S and 81�i�l,

mti ¼ hmsi :uid;msi :rno; BmðMÞ;msi :Ci. Then, 81�i�l; mti is a
valid k-anonymous perturbation of msi , i.e., mti ¼ RðmsiÞ, if
and only if the set M of messages form an l-clique in the
constraint graph GðS;EÞ such that 81�i�l; msi :k � l.

Proof. First, we show that the left-hand side holds if we
assume that the right-hand side holds. The spatial and
temporal containment requirements are satisfied, as we
have 81�i�l, LðmsiÞ 2 BmðMÞ ¼ BclðmtiÞ from the defini-
tion of an MBR. k-anonymity is also satisfied, as for any
message msi 2M, there exists l � msi :k messages
fmt1 ;mt2 ; . . . ;mtlg � T such that

81�j�l; BmðMÞ ¼ BclðmtjÞ ¼ BclðmtiÞ

and 81�i6¼j�l, mti :uid 6¼ mtj :uid. The latter follows, as M

forms an l-clique and, due to condition 3, two messages
msi and msj do not have an edge between them
in GðS;EÞ if msi :uid ¼ msj :uid and we have 81�i�l,
msi :uid ¼ mti :uid.

It remains to be proved that the spatial and temporal
resolution constraints are satisfied. To see this, consider
one of any three dimensions in our spatio-temporal space
without loss of generality, say, the x-dimension. Let
xmin ¼ min1�i�l msi :x and let xmax ¼ max1�i�l msi :x.

Since M forms an l-clique in GðS;EÞ, from conditions 1
and 2, we have 81�i�l, fxmin; xmaxg u �ðmsi :x;msi :dxÞ
and, thus, 81�i�l, ½xmin; xmax� u �ðmsi :x;msi :dxÞ from
convexity. Using a similar argument for other dimensions
and noting that BmðMÞ ¼ ð½xmin; xmax�, ½ymin; ymax�, and
½tmin; tmax�Þ, we have 81�i�l,BmðMÞ u BcnðmsiÞ. Now, we
show that the right-hand side holds if we assume that the
left-hand side holds. Since 81�i�l, mti ¼ RðmsiÞ, from the
definition of k-anonymity, we must have 81�i�l, msi :k � l.
From the spatial and temporal containment require-
ments, we have 81�i�l, LðmsiÞ 2 BmðMÞ, and from the
spatial and temporal resolution constraints, we have
81�i�l, BmðMÞ u BcnðmsiÞ. These two imply that 81�i;j�l,
LðmsiÞ 2 BcnðmsjÞ, satisfying conditions 1 and 2. Again,
from k-anonymity, we have 81�i6¼j�l, msi :uid 6¼ msj :uid,
satisfying condition 3. Thus, S forms an l-clique in
GðS;EÞ, completing the proof. tu

3.3 Illustration of the Theorem

We demonstrate the application of this theorem with an
example. Fig. 4 shows four messages: m1, m2, m3, and m4.
Each message is from a different mobile client.2 We
omitted the time domain in this example for ease of
explanation, but the extension to the spatio-temporal space
is straightforward. Initially, the first three of these
messages are inside the system. Spatial layout I shows
how these three messages spatially relate to each other. It
also depicts the spatial constraint boxes of the messages.
Constraint graph I shows how these messages are connected
to each other in the constraint graph. Since the spatial
locations of messages m1 and m2 are mutually contained in
each other’s spatial constraint box, they are connected in
the constraint graph and m3 lies apart by itself. Although
m1 and m2 form a 2-clique, they cannot be anonymized
and are removed from the graph. This is because m2:k ¼ 3
and, as a result, the clique does not satisfy the CliqueCloak
theorem. Spatial layout II shows the situation after m4

arrives, and constraint graph II shows the corresponding
status of the constraint graph. With the inclusion of m4,
there exists only one clique whose size is at least equal to
the maximum k value of the messages that it contains. This
clique is fm1;m2;m4g. We can compute the MBR of the
messages within the clique, use it as the spatio-temporal
cloaking box of the perturbed messages, and then safely
remove this clique. Fig. 4b clearly shows that the MBR is
contained by the spatial constraint boxes of all messages
within the clique. Once these messages are anonymized,
the remaining message m3 is not necessarily dropped from
the system. It may later be picked up by some other new
message and anonymized together with it, or it may be
dropped if it cannot be anonymized until its deadline,
specified by its temporal tolerance constraint.

Although, in the described example, we have found a
single clique immediately after m4 was received, we could
have had cliques of different sizes to choose from. For
instance, if m4:k was 2, then fm3;m4g would have also
formed a valid clique according to the CliqueCloak
theorem. We address the questions of what kind of cliques
to search and when and how we can search for such cliques
in detail in Section 4.
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3.4 Data Structures

We briefly describe the four main data structures that are
used in the message perturbation engine.

The Message Queue Qm is a simple first-in, first-out (FIFO)
queue which collects the messages sent from the mobile
clients in the order that they are received. The messages are
popped from this queue by the message perturbation
engine in order to be processed.

The Multidimensional Index Im is used to allow efficient
search on the spatio-temporal points of the messages. For
each message, say, ms, in the set of messages that are not yet
anonymized and are not yet dropped according to the
expiration condition specified by the temporal tolerance, Im
contains a 3D point LðmsÞ as a key, together with the
message ms as data. The index is implemented using an in-
memory R�-tree [17] in our system.

The Constraint Graph Gm is a dynamic in-memory graph,
which contains the messages that are not yet anonymized
and not yet dropped due to expiration. The structure of the
constraint graph is already defined in Section 3.2. The
multidimensional index Im is mainly used to speed up the
maintenance of the constraint graph Gm, which is updated
when new messages arrive or when messages are anon-
ymized or expired.

The Expiration Heap Hm is a mean heap sorted based on
the deadline of the messages. For each message, say, ms, in
the set of messages that are not yet anonymized and are not
yet dropped due to expiration, Hm contains a deadline
ms:tþms:dt as the key, together with the message ms as the
data.3 The expiration heap is used to detect expired
messages that cannot be successfully anonymized so that
they can be dropped and removed from the system.

3.5 Engine Algorithms

Upon the arrival of a new message, the perturbation
engine will update the message queue (FIFO) to include

this message. The message perturbation process works by

continuously popping messages from the message queue

and processing them for k-anonymity in four steps. The

pseudocode of the perturbation engine is given in

Algorithm 1.

Algorithm 1. Message Perturbation Engine.

MSGPERTENGINE()

The engine runs in its own thread, as long as the variable

engine running remains set to true. This variable is

initialized to true when the engine is turned on and is set

to false when the engine is closed down upon an explicit
command.

(1)while engine running ¼ true

(2) if Qm 6¼ ;
(3) msc  Pop the first item in Qm

(4) Add msc into Im with LðmscÞ
(5) Add msc into Hm with ðmsc :tþmsc :dtÞ
(6) Add the message msc into Gm as a node

(7) N  Range search Im using BcnðmscÞ
(8) foreach ms 2 N , ms 6¼ msc

(9) if LðmscÞ 2 BcnðmsÞ
(10) Add the edge ðmsc ;msÞ into Gm

(11) G0m  Subgraph of Gm consisting of messages in N

(12) M  LOCAL-k_SEARCHðmsc :k;msc ; G
0
mÞ

(13) if M 6¼ ;
(14) Randomize the order of messages in M

(15) foreach ms in M

(16) Output perturbed message

mt  hms:uid;ms:rno; BmðMÞ;ms:Ci
(17) Remove the message ms from Gm, Im, Hm

(18) while true

(19) ms  Topmost item in Hm

(20) if ms:tþms:dt < now

(21) Remove the message ms from Gm, Im
(22) Pop the topmost element in Hm

(23) else break

Phase 1: Zoom-in. In this step, we update the data
structures with the new message from the message queue
and integrate the new message into the constraint graph,
i.e., search all the messages pending for perturbation and
locate the messages that should be assigned as neighbors to
it in the constraint graph (zoom in). Concretely, when a
message msc is popped from the message queue, it is
inserted into the index Im by using LðmscÞ, inserted into the
heap Hm by using msc :tþmsc :dt, and inserted into the
graph Gm as a node. Then, the edges incident upon
vertex msc are constructed in the constraint graph Gm by
searching the multidimensional index Im by using the
spatio-temporal constraint box of the message, i.e.,
BcnðmscÞ, as the range. The messages whose spatio-temporal
points are contained in BcnðmscÞ are candidates for being
msc ’s neighbors in the constraint graph. These messages
(denoted as N in the pseudocode) are filtered based on
whether their spatio-temporal constraint boxes contain
LðmscÞ. The ones that pass the filtering step become
neighbors of msc . We call the subgraph that contains msc

and its neighbors the focused subgraph, denoted by G0m (see
lines 3-11 in the pseudocode).
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Phase 2: Detection. In this step, we apply the local-k search
algorithm in order to find a suitable clique in the focused
subgraph G0m of Gm, which contains msc and its neighbors
in Gm, denoted by nbrðmsc ;GmÞ. Formally, nbrðmsc ;GmÞ is
defined as fmsjðmsc ;msÞ is an edge in Gmg. In the local-k
search, we try to find a clique of size msc :k that includes the
message msc and satisfies the CliqueCloak theorem. The
pseudocode of this step is given separately in Algorithm 2
as the function local-k Search. Note that the local-k Search
function is called within Algorithm 1 (line 12), with
parameter k set to msc :k. Before beginning the search, a
set U � nbrðmsc ;G

0
mÞ is constructed such that, for each

message ms 2 U , we have ms:k � k (lines 1 and 2). This
means that the neighbors of msc whose anonymity values
are higher than k are simply discarded from U as they
cannot be anonymized with a clique of size k. Then, the set
U is iteratively filtered until there is no change (lines 3-8). At
each filtering step, every message ms 2 U is checked to see
whether it has at least k� 2 neighbors in U . If not, then the
message cannot be part of a clique that contains msc and has
size k; thus, the message is removed from U . After the set U
is filtered, the possible cliques in U [ fmscg that contain msc

and have size k are enumerated, and if one satisfying the
k-anonymity requirements is found, then the messages in
that clique are returned.

Algorithm 2. Local-k search algorithm.

LOCAL-k_SEARCHðk;msc ; G
0
mÞ

(1) U  fmsjms 2 nbrðmsc ;G
0
mÞ and ms:k � kg

(2) if jU j < k� 1 then return ;
(3) l 0

(4) while l 6¼ jUj
(5) l jU j
(6) foreach ms 2 U
(7) if ðjnbrðms;G

0
mÞ \ Uj < k� 2Þ

(8) U  U n fmsg
(9) Find any subset M � U , s.t.

jMj ¼ k� 1 and M [ fmscg forms a clique

(10) if M found then return M

(11) else return ;
Phase 3: Perturbation. In this step, we generate the

k-anonymized messages to be forwarded to the external
LBS providers. If a suitable clique is found in the detection
step, then the messages in the clique (denoted as M in the
pseudocode) are first randomized to prevent temporal
correlations with message arrival times. Then, they are
anonymized by assigning BmðMÞ (the MBR of the spatio-
temporal points of the messages in the clique) as their
cloaking box. Then, they are removed from the graph Gm,
as well as from the index Im and the heap Hm. This step is
detailed in the pseudocode through lines 13-17. In case a
clique cannot be found, the message stays inside Im, Gm,
and Hm. It may be later picked up and anonymized during
the processing of a new message or may be dropped when
it expires.

Phase 4: Expiration. A message is considered to be expired
if the current time is beyond the high point along the
temporal dimension of the message’s spatio-temporal
constraint box, which means that the message has delayed
beyond its deadline. In this step, we take care of the expired
messages. After the processing of each message, we check

the expiration heap for any messages that have expired. The
message on top of the expiration heap is checked, and if its
deadline has passed, then it is removed from Im, Gm, and
Hm. Such a message cannot be anonymized and is dropped.
This step is repeated until a message whose deadline is
ahead of the current time is reached. Lines 18-23 of the
pseudocode deals with expiration.

4 IMPROVED CliqueCloak ALGORITHMS

In this section, we describe several CliqueCloak algorithms
that improve the performance of the base algorithm
described in Section 3.5. These variations are introduced
through configurations along the three dimensions shown
in Fig. 5. These three dimensions represent three critical
aspects of the clique search performed for locating a group
of messages that can be anonymized together: 1) what sizes
of message groups are searched, 2) when the search is
performed, and 3) how the search is performed.

In the rest of this section, we discuss various optimiza-
tions that we propose along these three dimensions to
improve the basic algorithm. All of the proposed optimiza-
tions are heuristic in nature. We would like to note that the
general problem of the optimal k-anonymization is shown to
be NP-hard [18], [19].

4.1 What Size Cliques to Search: Nbr-k versus
Local-k

When searching for a clique in the focused subgraph, it is
essential to ensure that the newly received message, say,
msc , should be included in the clique. If there is a new clique
formed due to the entrance of msc in the graph, then it must
contain msc . Thus, msc is a good starting position. In
addition, we want to look for bigger cliques that include msc

instead of searching for a clique with size msc :k, provided
that the k value of each message within the clique is smaller
than or equal to the size of the clique. There are two strong
motivations behind this approach. First, by anonymizing a
larger number of messages at once, we can minimize the
number of messages that have to wait for later arriving
messages in order to be anonymized. Second, by anonymiz-
ing messages in larger groups, we can provide better
privacy protection against linking attacks. We develop the
nbr-k search algorithm based on these design guidelines. Its
pseudocode is given in Algorithm 3.

Algorithm 3: nbr-k search algorithm.
NBR-k_SEARCHðmsc ;G

0
mÞ

(1) if jnbrðmsc ;G
0
mÞj < msc :k� 1 then return ;

(2) V  fms:kjms ¼ msc _ms 2 nbrðmsc ;G
0
mÞg

(3) foreach distinct k 2 V in decreasing order

(4) if k < msc :k then return ;
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(5) M  LOCAL-k_SEARCHðk;msc ; G
0
mÞ

(6) if M 6¼ ; then return M

(7) return ;
The nbr-k search first collects the set of k values that the

new message msc and its neighbors nbrðmsc ;G
0
mÞ have,

denoted as V in the pseudocode. The k values in V are
considered in decreasing order until a clique is found or k
becomes smaller than msc :k, in which case the search
returns empty set. For each k 2 V considered, a clique of
size k is searched by calling the local-k Search function with
appropriate parameters (see line 5). If such a clique can be
found, the messages within the clique are returned. To
integrate the nbr-k search into the message perturbation
engine, we can replace line 12 of Algorithm 1 with the call
to the nbr-k Search function.

4.2 When to Search for Cliques: Deferred versus
Immediate

We have described the algorithm of searching for cliques
upon the arrival of a new message and refer to this type of
search as immediate search. The immediate search is not
beneficial when the constraint graph is sparse around the
new message, and the anonymization is less likely to be
successful. Thus, it may result in an increased number of
unsuccessful searches and deteriorate the performance.

Instead of immediately searching for a clique for each
newly arrived message, we can defer this processing. One
extreme approach to the deferred search is to postpone the
clique search for every message and perform the clique
search for a deferred message at the time of its expiration if it
has not yet anonymized together with other messages.
However, this will definitely increase the delay for all
messages. An alternative way to the deferred search is to
postpone the search only if the new message does not have
enough neighbors around and, thus, the constraint graph
around this new message is sparse. Concretely, we introduce
a system parameter � � 1 to adjust the number of messages
for which the clique search is deferred and perform the
clique search for a new message msc only if the number of
neighbors that this new message has at its arrival time is
larger than or equal to � �msc :k. Smaller � values push the
algorithm toward immediate processing. We can set the �
value statically at compile time based on experimental
studies or adaptively during runtime by observing the rate
of successful clique searches with different � values. We
refer to this variation of the clique search algorithm as
deferred CliqueCloak. The main idea of the deferred search is
to wait until a certain message density is reached and then
perform the clique search. Thus, the deferred approach
performs a smaller number of clique searches at the cost of
larger storage and data structure maintenance overhead.

4.3 How to Search Cliques: Progressive versus
One Time

Another important aspect that we can use to optimize the
clique search performance is how we can search perspec-
tive. It is interesting to note that, when the constraint boxes
of messages are large, messages are more likely to be
anonymized since the constraints are relaxed. However,
when the constraint boxes of messages are large, the clique
searches do not terminate early and incur a high-perfor-
mance penalty. We observe that this is due to the increased

search space of the clique search phase, which is a direct
consequence of the fact that large constraint boxes result in
a large number of neighbors around the messages in the
constraint graph. This inefficiency becomes more prominent
with increasing k due to the combinatorial nature of the
search. An obvious way to improve the search is to first
consider neighbors that are spatially close by, which allows
us to terminate our search quickly and avoid or reduce the
processing time spent on the neighbors that are spatially far
away and potentially less useful for anonymization.

Algorithm 4. Progressive search algorithm.

PROGRESSIVESEARCHðmsc ;G
0
mÞ

(1) U  Sort nbrðmsc ;G
0
mÞ based on the euclidean distance

between LðmsÞ and LðmscÞ, ms 2 nbrðmsc ;G
0
mÞ

(2) z 1

(3) repeat

(4) z zþ 1

(5) v MINðz �msc :k; jUjÞ
(6) G00m  Subgraph of G0m containing msc

and the first v� 1 messages in U

(7) M  LOCAL-k_SEARCH ðk;msc ; G
00
mÞ

// or NBR-k_SEARCH ðmsc ;G
00
mÞ

(8) if M 6¼ ; then return M

(9) until v < jU j
(10) return ;

The progressive search technique builds upon this insight.
It first sorts (in increasing order) the neighbors of a message
msc based on the distance of their spatio-temporal point to
msc ’s spatio-temporal point. Then, the search (either local-k
or nbr-k) is performed iteratively over the set of sorted
messages by using a progressively enlarging subgraph that
consists of a progressively increasing number of messages
from the sorted set of messages. Initially, the subgraph
consists of only z �msc :k messages, where z ¼ 2. If a proper
clique cannot be found, then we increase z by 1 and apply
the search over the enlarged subgraph again. This process
repeats until the complete set of sorted messages is
exhausted. Algorithm 4 gives a sketch of the progressive
search. For the purpose of comparison, we refer to the
nonprogressive search as one-step search.

5 EVALUATION METRICS

In this section, we discuss several evaluation metrics for
system level control of the balance between the privacy
value and performance implication in terms of QoS. These
metrics can be used to evaluate the effectiveness and the
efficiency of the message perturbation engine.

Success rate is an important measure for evaluating the
effectiveness of the proposed location k-anonymity model.
Concretely, the primary goal of the cloaking algorithm is to
maximize the number of messages perturbed successfully
in accordance with their anonymization constraints. In
other words, we want to maximize jT j. The success rate can
be defined over a set S0 � S of messages as the percentage
of messages that are successfully anonymized (perturbed),

that is, jfmtjmt¼RðmsÞ;mt2T;ms2S0gj
100�1�jS0 j .

Important measures of efficiency include relative ano-
nymity level, relative temporal resolution, relative spatial
resolution, and message processing time. The first three are
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measures related with QoS, whereas the last one is a
performance measure. It is important to remember that the
primary evaluation metric for our algorithms is the success
rate. This is because our approach always guarantees that
the anonymization constraints are respected for the mes-
sages that are successfully anonymized. When comparing
two approaches that have similar success rates, one that
provides a better relative anonymity level or relative
spatial/temporal resolution is preferred.

The relative anonymity level is a measure of the level of
anonymity provided by the cloaking algorithm, normalized
by the level of anonymity required by the messages. We
define the relative anonymity level over a set T 0 � T of
perturbed messages by

1

jT 0j
X

mt¼RðmsÞ2T 0

jfmjm 2 T ^ BclðmtÞ ¼ BclðmÞgj
ms:k

:

Note that the relative anonymity level cannot go below 1.
Higher relative anonymity levels mean that, on the average,
messages are getting anonymized with larger k values than
the user-specified minimum k-anonymity levels. Due to the
inherent trade-off between the anonymity level and the
spatial and temporal resolutions, a user may have to specify
a lower k value than what she actually desires in order to
maintain a certain amount of spatial resolution and/or
temporal resolution for the service request messages. In
these cases, we will prefer algorithms that can provide
higher relative anonymity levels.

The relative spatial resolution is a measure of the spatial
resolution provided by the cloaking algorithm, normalized
by the minimum acceptable spatial resolution defined by
the spatial tolerances. We define the relative spatial
resolution over a set of perturbed messages T 0 � T by

1
jT 0 j
P

mt¼RðmsÞ2T 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ms:dx�2�ms:dy
kmt:Xk�kmt:Y k

q
;

where k:k is applied to an interval and gives its length. The
numerator in the equation is the area of the constraint box
for the source message, whereas the denominator is the area
of the cloaking box for its transformed format. Higher
relative spatial resolution values imply that anonymization
is performed with smaller spatial cloaking regions relative
to the constraint boxes specified.

The relative temporal resolution is a measure of the
temporal resolution provided by the cloaking algorithm,
normalized by the minimum acceptable temporal resolution
defined by the temporal tolerances. We define the relative
temporal resolution over a set of perturbed messages T 0 � T
by 1

jT 0 j
P

mt¼RðmsÞ2T 0
2�ms:dt
kmt:Ik . Higher relative temporal resolu-

tion values imply that anonymization is performed with
smaller temporal cloaking intervals and, thus, with smaller
delays due to perturbation. Relative spatial and temporal
resolutions cannot go below 1.

The message processing time is a measure of the
runtime performance of the message perturbation engine.
The message processing time may become a critical issue if
the computational power at hand is not enough to handle
the incoming messages at a high rate. In the experiments in
Section 6, we use the average CPU time needed to process
103 messages as the message processing time.

6 EXPERIMENTAL STUDY

We break up the experimental evaluation into three
components. The first two components demonstrate the
effectiveness of the CliqueCloak algorithms in realizing the
proposed personalized location k-anonymity model in terms
of the success rate, relative anonymity level, and relative
spatial/temporal resolution. The third component studies
the scalability of the algorithms under extreme cases in
terms of the runtime performance. Before presenting our
experimental results, we first describe the trace generator
used to generate realistic traces that are employed in the
experiments and the details of our experimental setup.

6.1 Experimental Setup

We have developed a trace generator (shown in Fig. 6),
which simulates cars moving on roads and generates
requests using the position information from the simula-
tion. The trace generator loads real-world road data,
available from the National Mapping Division of the US
Geological Survey (USGS) [20] in Spatial Data Transfer
Standard (SDTS) [21] format. We use a transportation
layer of 1:24,000 Digital Line Graphs (DLGs) as road data.
We convert the graphs into Scalable Vector Graphic [22]
format using the Global Mapper [23] software and use
them as input to our trace generator. We extract three
types of roads from the trace graph: class 1 (expressway),
class 2 (arterial), and class 3 (collector). The generator uses
real traffic volume data to calculate the total number of
cars for different road classes. The total number of cars on
a certain class of roads is proportional to the total length
of the roads for that class and the traffic volume for that
class and is inversely proportional to the average speed of
cars for that class. Once the number of cars on each type
of road is determined, they are randomly placed into the
graph, and the simulation begins. Cars move on the roads
and take other roads when they reach joints. The simulator
tries to keep the fraction of cars on each type of road
constant as time progresses. A car changes its speed at
each joint based on a normal distribution whose mean is
equal to the average speed for the particular class of roads
that the car is on.
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We used a map from the Chamblee region of the state of
Georgia to generate the trace used in this paper. Fig. 6
shows this map loaded into the trace generator. The map
covers a region of � 160 km2. In terms of the length of
roads, class-1 roads constitute 7.3 percent of the total,
whereas class-2 and class-3 roads constitute 5.4 percent
and 87.3 percent, respectively. The mean speeds and
standard deviations for each road type are given in Table 3.
The traffic volume data is taken from Gruteser and
Grunwald [8] and is also listed in Table 2. These settings
result in approximately 10,000 cars, 32 percent of which are
on class-1 roads, 13 percent are on class-2 roads, and
55 percent are on class-3 roads. The trace has the duration
of 1 hour. Each car generates several messages during the
simulation. All evaluation metrics are calculated over these
messages generated within the 1-hour period4 (over
1,000,000 messages). The experimental results are averages
of a large number of messages. Each message specifies an
anonymity level in the form of a k value, which is picked
from the list {5, 4, 3, 2} by using a Zipf distribution with
parameter 0.6. The setting of k ¼ 5 is the most popular one,
and k ¼ 2 is the least popular one based on the Zipf
distribution. In certain experiments, we extend this list up
to k ¼ 12, keeping the highest k value as the most popular
anonymity level. This enables us to model a population
that prefers higher privacy in general. We show that, even
for such a workload, the personalized k-anonymity model
provides significant gains.

The spatial and temporal tolerance values of the messages
are selected using normal distributions whose default
parameters are given in Table 2. Whenever a message is
generated, the originator of the message waits until the
message is anonymized or dropped, after which it waits for a
normally distributed amount of time, called the interwait
time, whose default parameters are listed in Table 2.

All parameters take their default values if not stated
otherwise. We change many of these parameters to observe

the behavior of the algorithms in different settings. For the
spatial points of the messages, the default settings result in
anonymizing around 70 percent of messages with an
accuracy of < 18 m in 75 percent of the cases, which we
consider to be very good when compared to the E-911
requirement of 125 m accuracy in 67 percent of the cases [6].
For the temporal point of the messages, the default
parameters also result in a delay of < 10 s in 75 percent of
the cases and < 5 s in 50 percent of the cases. Our results
show that the personalized location k-anonymity approach
presented in this paper is a promising solution. Although
there are many aspects of the experimental design, such as
car movement patterns, privacy and QoS requirements of
users, message generation rates, and so forth, which can
affect the results of our experiments, we believe that our
results provide a necessary and informative first step to
understand the fundamental characteristics of this person-
alized location privacy model. We hope that the results
presented in this paper will stimulate more research to
comprehensively evaluate the applicability of personalized
location privacy in real-world LBS applications.

6.2 Effectiveness of the Personalized k-Anonymity
Model

We first study the effectiveness of our personalized
location k anonymity model with respect to 1) different
k requirements from individual users and 2) the uniform
k-anonymity model.

Table 4 shows the advantage of using variable k
compared to using a uniform k value ð¼ 5Þ independent
of the individual k values specified in the messages. We
observe that the variable k approach provides 33 percent
higher success rate, 110 percent better relative spatial
resolution, and 30 percent better relative temporal resolu-
tion for messages with k ¼ 2. The improvements are higher
for messages with smaller k values, which implies that the
variable k location anonymity approach does not unneces-
sarily penalize users with low privacy requirements when
compared to the uniform k approach. The amount of
improvement in terms of the evaluation metrics decreases
as k approaches its maximum value of 5.

6.3 Results on Success Rate

Fig. 7 shows the success rate for the nbr-k and local-k
approaches. The success rate is shown (on the y-axis) for
different groups of messages, each group representing
messages with a certain k value (on the x-axis). The two
leftmost bars show the success rate for all of the messages.
The wider bars show the actual success rate provided by the
CliqueCloak algorithm. The thinner bars represent a lower
bound on the percentage of messages that cannot be
anonymized no matter what algorithm is used. This lower
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insignificant standard deviation values (� 0.4 for a mean success rate of
� 70) and, thus, decided to report the results from a single 1 hour trace.

TABLE 2
Message Generation Parameters

TABLE 3
Car Movement Parameters

TABLE 4
Success Rate and Relative Spatial/Temporal

Resolutions with Fixed k Compared to Variable k
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bound is calculated as follows: For a message ms, if the set
U¼fmsi jmsi 2 S ^ LðmsiÞ 2BcnðmsÞ ^msi :t 2 �ðms:t;ms:dtÞg
has size less than ms:k, then the message cannot be
anonymized. This is because the total number of messages
that ever appear inside ms’s constraint box during its
lifetime is less than ms:k. However, if the set U has size of
at least ms:k, then the message ms may still not be
anonymized under a hypothetical optimal algorithm. This
is because the optimal choice may require anonymizing a
subset of U that does not include ms, together with some
other messages not in U . As a result, the remaining
messages in U may not be sufficient to anonymize ms. It
is not possible to design an online algorithm that is optimal
in terms of success rate due to the fact that such an
algorithm will require future knowledge of messages,
which is not known beforehand. If a trace of the messages
is available, as in this work, then the optimal success rate
can be computed offline. However, we are not aware of a
time-and-space-efficient offline algorithm for computing
the optimal success rate. As a result, we use a lower bound
on the number of messages that cannot be anonymized.

There are three observations from Fig. 7. First, the nbr-k
approach provides an average success rate of around
15 percent better than local-k. Second, the best average
success rate achieved is around 70 percent. Out of the
30 percent of dropped messages, at least 65 percent of them
cannot be anonymized, meaning that, in the worst case, the
remaining 10 percent of all messages are dropped due to
nonoptimality of the algorithm with respect to success rate.
If we knew of a way to construct the optimal algorithm
with a reasonable time and space complexity, given full
knowledge of the trace, we could have gotten a better
bound. Last, messages with larger k values are harder to
anonymize. The success rate for messages with k ¼ 2 is
around 30 percent higher than the success rate for
messages with k ¼ 5.

Fig. 8 shows the relative anonymity level (the higher, the
better) for nbr-k and local-k. The relative anonymity level is
shown (on the y-axis) for different groups of messages, each
group representing messages with a certain k value (on the
x-axis). Nbr-k shows a relative anonymity level of 1.7 for
messages with k ¼ 2, meaning that, on the average, these
messages are anonymized with k ¼ 3:4 by the algorithm.
Local-k shows a lower relative anonymity level of 1.4 for
messages with k ¼ 2. This gap between the two approaches
vanishes for messages with k ¼ 5, since both algorithms do
not attempt to search cliques of sizes larger than the
maximum k value in the system. The difference in the

relative anonymity level between nbr-k and local-k shows
that the nbr-k approach is able to anonymize messages
with smaller k values together with the ones with higher
k values. This is particularly beneficial for messages with
higher k values as they are harder to anonymize. This also
explains why nbr-k results in a better success rate.

We also studied the average success rate and the
message processing time for the nbr-k and local-k search
approaches with the immediate or deferred processing
mode. The results can be found in our technical report [13].
In summary, we found that the immediate approach
provides a better success rate than the deferred approach
and that the deferred approach does not provide improve-
ment in terms of the message processing time even though
it decreases the number of times that the clique search is
performed. The reason that the deferred approach performs
worse in terms of the total processing time is that, for
k � 10, the index update dominates the cost of processing
the messages, and the deferred approach results in a more
crowded index. However, the deferred approach is promis-
ing in terms of message processing time for cases where
k values are really large and, thus, the clique search phase
dominates the cost.

Fig. 9 plots the average success rate as a function of the
mean interwait time and mean temporal tolerance. Simi-
larly, Fig. 10 plots the average success rate as a function of
the mean interwait time and mean spatial tolerance. For
both figures, the variances are always set to 0.4 times the
means. We observe that, the smaller the interwait time, the
higher the success rate. For smaller values of the temporal
and spatial tolerances, the decrease in the interwait time
becomes more important in terms of keeping the success
rate high. When the interwait time is high, we have a lower

GEDIK AND LIU: PROTECTING LOCATION PRIVACY WITH PERSONALIZED K-ANONYMITY: ARCHITECTURE AND ALGORITHMS 13

Fig. 7. Success rates for different k values.
Fig. 8. Relative anonymity levels for different k values.

Fig. 9. Success rate with respect to temporal tolerance and interwait
time.
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rate of messages coming into the system. Thus, it becomes
harder to anonymize messages as the constraint graph
becomes sparser. Both spatial and temporal tolerances have
a tremendous effect on the success rate. Although high
success rates (around 85) are achieved with high temporal
and spatial tolerances, we will show in the next section that
the relative temporal and spatial resolutions are much
larger than 1 in such cases.

6.4 Results on Spatial/Temporal Resolution

In Section 6.3, we showed that one way to improve the
success rate is to increase the spatial and temporal tolerance
values specified by the messages. In this section, we show
that our CliqueCloak algorithms have the nice property
that, for most of the anonymized messages, the cloaking box
generated by the algorithm is much smaller than the
constraint box of the received message specified by the
tolerance values, resulting in higher relative spatial and
temporal resolutions. Fig. 11a plots the frequency distribu-
tion (y-axis) of the relative temporal resolutions (x-axis) of
the anonymized messages. For a specific resolution value �
on the x-axis, the corresponding value on the y-axis
represents the frequency of messages having a relative
temporal resolution value of �. Fig. 11 shows that, in
75 percent of the cases, the provided relative temporal
resolution is > 3:25 and, thus, an average temporal accuracy
of roughly < 10 s (recall that the default mean temporal
tolerance was 30 s). For 50 percent of the cases, it is > 5:95,
and for 25 percent of the cases, it is > 17:25. This points out
that the observed performance with regard to temporal
resolutions is much better than the worst case specified by
the temporal tolerances. Moreover, this property of the
algorithm holds under different settings of the mean and
variance values for the spatial and temporal tolerances [13].

Fig. 11b plots the frequency distribution (y-axis) of the
relative spatial resolutions (x-axis) of the anonymized
messages. Fig. 11 shows that, in 75 percent of the cases,
the provided relative spatial resolution is > 5:85 and, thus,
an average spatial accuracy of roughly < 18 m (recall that
the default mean spatial tolerance was 100 m). In 50 percent
of the cases, it is > 7:75, and for 25 percent of the cases, it
is > 12:55. This points out that the observed performance
with regard to spatial resolutions is much better than the
worst case specified by the spatial tolerances. Moreover,
this property of the algorithm holds under different
settings of the mean and variance values for the spatial
and temporal tolerances [13].

6.5 Results on Message Processing Time

We now evaluate the scalability of our algorithms with
respect to message processing time and message success
rate. We measure how the CliqueCloak algorithm performs
in extreme conditions with large k and large subgraphs on
which the search is performed. Given that larger constraint
boxes lead to larger subgraphs, we multiply the default
values of the spatial and temporal tolerances that define the
constraint boxes with a scaling factor. Larger values of the
scaling factor represent more relaxed constraints with
respect to spatial and temporal tolerances and, thus, larger
constraint boxes.

Fig. 12a plots the time to process 103 messages as a
function of the scaling factor for various k values going up
to 12. All experiments reported in Fig. 12 use the [nbr-k,
immediate, one-time] configuration. We make two obser-
vations from Fig. 12a: First, the message processing time
shows a smaller increase with increasing k initially, which
is replaced by an exponential increase after k ¼ 10. We
have omitted cases where k > 12 due to their very high
message processing times. This observation is in line with
our previous claim that the clique search part does not
dominate the message processing cost until k gets close to
10. This is further backed up by Fig. 13, which will be
described shortly. The second and more interesting
observation is that the message processing time shows an
increase with an increasing constraint box size (scaling
factor), especially for large k. A certain amount of increase
in the message processing time can be described by the
fact that the number of successfully anonymized messages
increases with the increasing scaling factor. This is shown
in Fig. 12b, which plots the success rate as a function of the
scaling factor for various k values. Although the increase
in the message processing time can be justified by the extra
work done for anonymizing a larger number of messages,
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Fig. 11. Relative temporal and spatial resolution distributions.
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the exact evaluation requires a new metric, which we
define as the time to process 103 messages divided by the
fraction of messages successfully anonymized. We call this
metric the processing time per 103 anonymized messages.
Fig. 12c plots the processing time per 103 anonymized
messages as a function of the scaling factor for various
k values. Now, we can observe a decrease in the evaluation
metric with the increasing scaling factor, which is intuitive,
since more relaxed tolerance values (large scaling factor)
are expected to improve the runtime performance. How-
ever, after the scaling factor goes over 2 (2.5 for k � 6), we
see a reverse trend.

Before presenting results on “fixing” this behavior by
employing the progressive search technique, we present
the breakdown of the message processing cost into its
components to show that the clique search starts to
dominate the processing time when the scaling factor
becomes high, especially for large k. Fig. 13 shows the time
to process 103 messages as a function of the scaling factor
for various k values as a bar chart, where each bar is
divided into two parts: The upper thin bar represents the
time spent for the clique search (detection step) and the
lower thick bar represents the time spent for searching the
spatio-temporal index (zoom-in step). Percentages are also
given over each bar, representing the first part’s share. We
can observe that, for small k, the detection step is not
dominant. Even for k ¼ 10, it is responsible for half of the

processing time only when the scaling factor is increased to
2.5. For k ¼ 12, we observe that the detection step clearly
dominates and becomes even more dominant with the
increasing scaling factor.

Fig. 14a plots the time to process 103 messages as a
function of the scaling factor for k ¼ 12 with two different
configurations: progressive search and one-time search. All
experiments reported in Fig. 14 use the [nbr-k, immediate]
configuration for the other two dimensions. Fig. 14a shows
that the progressive approach is able to scale linearly with
the tolerance values and provides up to a 50 percent
improvement over the one-time search approach for the
particular range of scaling factors used in this experiment.
Fig. 14b plots the success rate as a function of the scaling
factor for k ¼ 4 and k ¼ 12 with the progressive search and
one-step search. It shows that the improvement in the
processing time comes at no cost with respect to the success
rate, both for small k and large k. Finally, Fig. 14c plots the
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Fig. 12. Scalability with respect to size of constraint boxes and k. (a), (b), and (c) Scaling factor.

Fig. 13. Break-up of message processing time with varying k.
Fig. 14. Impact of progressive search on performance. (a), (b), and
(c) Scaling factor.
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processing time per 103 anonymized messages as a function
of the scaling factor for k ¼ 12 with the progressive search
and one-step search. We observe that the progressive search
successfully removes most of the increasing trend seen in
the one-step search. However, it is not completely removed,
as can be seen from the small increase when the scaling
factor goes from 2.5 to 3. This also points out that there
should be a system-specified maximum constraint box to
stop the performance degradation with unnecessarily large
constraint boxes.

6.6 Summary of Experimental Results

We summarize major findings from our experiments and
the insights obtained from the experimental results in four
points:

1. Nbr-k outperforms local-k in both success rate and
relative anonymity level metrics without incurring
extra processing overhead. This is due to its ability
to anonymize larger groups of messages together
at once.

2. The deferred search, a technique that aims at
decreasing the number of clique searches performed
in an effort to increase runtime performance, turns
out to be inferior to the immediate search. This is
because, for smaller k values, the index search and
update cost is dominant over the clique search cost
and the deferred search increases the size of the
index due to batching more messages before
performing the clique searches.

3. The progressive search improves the runtime per-
formance of anonymization, especially when con-
straint boxes and k values are large, without any side
effects on other evaluation metrics. This nature of the
progressive search is due to its proximity-aware
nature: The close-by messages that are more likely to
be included in the result of the clique search are
considered first with the progressive search.

4. The CliqueCloak algorithms have the nice property
that, for most of the anonymized messages, the
cloaking box generated is much smaller than the
constraint box of the received message specified by
the tolerance values, resulting in higher relative
spatial and temporal resolutions. In conclusion, the
configuration of [nbr-k, immediate, progressive] is
superior to other alternatives.

7 DISCUSSIONS AND FUTURE WORK

This section discusses some potential improvements, alter-
natives, and future directions of our work.

7.1 Success Rate and QoS versus Privacy Trade-Off

Our personalized k-anonymity model requires mobile
clients to specify their desired location anonymity level
and their spatial/temporal tolerance constraints. It is
possible that the level of privacy and the QoS can be in
conflict in a user’s specification. When such conflicts occur,
the success rate of anonymization will be low for this user’s
messages. In practice, such conflicts should be checked to
determine the need for fine-tuning in the privacy level or
QoS. The trade-off between the QoS defined by the spatial/
temporal tolerance constraints and the level of privacy
protection defined by the anonymity level k should be

adjusted such that the success rate of anonymization is kept
close to 1. In this paper, we developed a location
anonymization framework and associated system-level
facilitates for fine-tuning of the QoS versus privacy
protection trade-off. Due to the space constraint, we did
not discuss the application-dependent management of user-
involved adjustment of this trade-off. We believe that these
issues merit an independent study.

7.2 Optimality of the CliqueCloak Algorithms

It is important to note that the CliqueCloak algorithms that
we introduced in this paper are heuristic in nature.
Although we do not know the best success rates that can
be achieved for various distributions of anonymity con-
straints, we experimentally showed that, for practical
scenarios in the worst case, our algorithms drop only
10 percent of the messages due to nonoptimality. Further-
more, since it is extremely hard to accurately predict future
patterns of messages, it is difficult to build an online
optimal algorithm. These two observations lead us to the
conclusion that our algorithms will be highly effective in
practice. However, it is an open problem to study
advanced algorithms that have better optimality and
runtime performance.

7.3 Pseudonymous and Nonanonymous LBSs

In this paper, we assumed that the LBSs are anonymous;
that is, the true identities of mobile clients are not required
in the services provided. Services that require the knowl-
edge of user identities or pseudonyms (nonanonymous and
pseudonymous LBSs) will make the tracking of successive
messages from the same users trivial at the LBS side. We
believe that the pseudonymous LBSs can benefit from our
solution with some modifications. For instance, one
complication may arise when successive location-identity
bindings take place and the set of k messages from the two
adjacent bindings share only one pseudonym, which can
easily lead to a trajectory-identity binding. These types of
vulnerabilities can be prevented or mitigated by setting
proper time intervals for changing the pseudonyms
associated with mobile clients, without violating the service
requirements of the LBSs. Nevertheless, further research is
needed for devising effective techniques for performing
privacy-preserving pseudonym updates. In the case of
nonanonymous LBSs, we believe that the location privacy
protection will need to be guaranteed through policy-based
solutions managed by LBS providers. Policy-based solu-
tions require mobile clients to completely trust the LBS
providers in order to use the services provided.

8 RELATED WORK

8.1 Location Privacy and Anonymity

In the telecommunications domain, policy-based ap-
proaches have been proposed for protecting location
privacy [9], [24]. Users may use policies to specify their
privacy preferences. These policies specify what data about
the user can be collected, when and for which purposes it
can be used, and how and to whom it can be distributed.
Mobile clients have to trust the LBSs that the location
information is adequately protected.

A k-anonymity-based approach is another approach to
location privacy. It depersonalizes data through perturba-
tion techniques before forwarding it to the LBS providers.
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Location k-anonymity is first studied by Gruteser and
Grunwald [8]. Its location perturbation is performed by the
quadtree-based algorithm executing spatial and temporal
cloaking. However, this work suffers from several draw-
backs. First, it assumes a systemwide static k value for all
mobile clients, which hinders the service quality for those
mobile clients whose privacy requirements can be satisfied
using smaller k values. Furthermore, this assumption is far
from optimal, as mobile clients tend to have varying
privacy protection requirements under different contexts
and on different subjects. Second, their approach fails to
provide any QoS guarantees with respect to the sizes of the
cloaking boxes produced. This is because the quadtree-
based algorithm anonymizes the messages by dividing the
quadtree cells until the number of messages in each cell
falls below k and by returning the previous quadrant for
each cell as the spatial cloaking box of the messages under
that cell. In comparison, our framework for location
k-anonymity captures the desired degree of privacy and
service quality on a per-user basis, supporting mobile
clients with diverse context-dependent location privacy
requirements. Our message perturbation engine can ano-
nymize a stream of incoming messages with different
k anonymization constraints. Unlike earlier work [8], we do
not assume knowledge of user positions at the anonymity
server at all times. Our work assumes that the user
positions are known at the anonymity server side only to
the extent that they can be deduced from the users’ request
messages. Our proposed location cloaking algorithms are
effective in terms of the success rate of the message
perturbation and the amount of QoS loss due to location
cloaking. They are also flexible in the sense that each user
can specify a personalized k value, as well as spatial and
temporal tolerance values at a per-message granularity, to
adjust the requested level of privacy protection and to
bound the amount of loss in spatial resolution and the
temporal delay introduced during the message perturba-
tion. The spatial and temporal tolerances in our model
provide a flexible way of independently adjusting the level
of spatial and temporal cloaking performed.

8.2 Anonymity Support in Databases

In the database community, there exists a large amount of
literature on security control against the disclosure of
confidential information. Such disclosures may occur if,
through the answer to one or more queries, an adversary
can infer the exact value of or an accurate estimate of a
confidential attribute of an individual. Privacy protection
mechanisms suggested in the statistical databases literature
can be classified under three general methods, namely,
query restriction, data perturbation, and output perturbation. In
query restriction, the queries are evaluated against the
original database, but the results are only reported if the
queries meet certain requirements. There are many flavors
of query restriction, like restricting the number of entities in
the result set [25], controlling the overlap among successive
queries [26], keeping up-to-date logs of all queries and
checking for compromises whenever a new query is issued
[27], and clustering individual entities in mutually exclusive
subsets and restricting the queries to the statistical proper-
ties of these subsets [28]. In data perturbation, the database
is perturbed and the queries are evaluated against the
perturbed database. This is usually done by replacing the
database with a sample of it [29] or by perturbing the values

of the attributes in the database [30]. In output perturbation,
the results to the queries are perturbed, whereas the original
database is not. This is commonly achieved by sampling the
query results [31] or by introducing a varying perturbation
(not permanent) to the data that are used to compute the
result of a given query [32].

Another piece of related research is computing over
encrypted data values in data mining and database queries.
One representative work in recent years is the privacy-
preserving indexing technique proposed by Hore et al. for
supporting efficient query evaluation over encrypted data
[33]. This work is based on the Database as a Service (DAS)
model, where the service providers store encrypted data
owned by the content provider in their servers and provide
query services over the encrypted data. User queries are
translated into two parts: a server-side query that works
over the encrypted data and a client-side query that does
decryption and postprocessing over the results of the server
query part. Although the motivation and the problems
addressed in our paper are different, our work shares a
common assumption with the DAS work in the sense that
the content producer does not trust the service providers
and, thus, provides a privacy-preserving index instead of
the actual data content in the DAS scenario or the perturbed
location data through location anonymizer in the ano-
nymous LBS scenario, as discussed in this paper.

Finally, Samarati and Sweeney have developed a
k-anonymity model [12], [11], [10] for protecting data
privacy and a set of generalization and suppression
techniques for safeguarding the anonymity of individuals
whose information is recorded in database tables. Our work
makes use of this basic idea of k-anonymity.

9 CONCLUSION

We proposed a personalized k-anonymity model for
providing location privacy. Our model allows mobile
clients to define and modify their location privacy specifica-
tions at the granularity of single messages, including the
minimum anonymity level requirement, and the inaccuracy
tolerances along the temporal and spatial dimensions. We
developed an efficient message perturbation engine to
implement this model. Our message perturbation engine
can effectively anonymize messages sent by the mobile
clients in accordance with location k-anonymity while
satisfying the privacy and QoS requirements of the users.
Several variations of the spatio-temporal cloaking algo-
rithms, collectively called the CliqueCloak algorithms, are
proposed as the core algorithms of the perturbation engine.
We experimentally studied the behavior of our algorithms
under various conditions by using realistic workloads
synthetically generated from real road maps and traffic
volume data. Our work continues along a number of
directions, including the investigation of more optimal
algorithms under the proposed framework, the study of
QoS characteristics of real-world LBS applications, and how
QoS requirements impact the maximum achievable ano-
nymity level with reasonable success rate.
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